Characterizing single-molecule FRET dynamics with probability distribution analysis.
نویسندگان
چکیده
Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.
منابع مشابه
Identifying molecular dynamics in single-molecule FRET experiments with burst variance analysis.
Histograms of single-molecule Förster resonance energy transfer (FRET) efficiency are often used to study the structures of biomolecules and relate these structures to function. Methods like probability distribution analysis analyze FRET histograms to detect heterogeneities in molecular structure, but they cannot determine whether this heterogeneity arises from dynamic processes or from the coe...
متن کاملSingle-molecule fluorescence resonance energy transfer.
Fluorescent resonance energy transfer (FRET) is a powerful technique for studying conformational distribution and dynamics of biological molecules. Some conformational changes are difficult to synchronize or too rare to detect using ensemble FRET. FRET, detected at the single-molecule level, opens up new opportunities to probe the detailed kinetics of structural changes without the need for syn...
متن کاملSingle-molecule dynamics of semiflexible Gaussian chains
A semiflexible Gaussian chain model is used to determine the statistics and correlations of single-molecule fluorescence resonant energy transfer ~FRET! experiments on biological polymers. The model incorporates a persistence length in a Rouse chain and describes single-chain dynamics with normal modes. The hydrodynamic interaction is included in the dynamics of the semiflexible Gaussian chain ...
متن کاملSingle-molecule photon stamping FRET spectroscopy study of enzymatic conformational dynamics.
The fluorescence resonant energy transfer (FRET) from a donor to an acceptor via transition dipole-dipole interactions decreases the donor's fluorescent lifetime. The donor's fluorescent lifetime decreases as the FRET efficiency increases, following the equation: E(FRET) = 1 - τ(DA)/τ(D), where τ(D) and τ(DA) are the donor fluorescence lifetime without FRET and with FRET. Accordingly, the FR...
متن کاملClassic maximum entropy recovery of the average joint distribution of apparent FRET efficiency and fluorescence photons for single-molecule burst measurements.
We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes. Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemphyschem : a European journal of chemical physics and physical chemistry
دوره 11 10 شماره
صفحات -
تاریخ انتشار 2010